Multi-location Leakage Resilient Cryptography

نویسندگان

  • Ali Juma
  • Yevgeniy Vahlis
  • Moti Yung
چکیده

Understanding and modeling leakage in the context of cryptographic systems (connecting physical protection of keys and cryptographic operation) is an emerging area with many missing issues and hard to understand aspects. In this work we initiate the study of leakage out of cryptographic devices when the operation is inherently replicated in multiple locations. This setting (allowing the adversary access to leakage at different locations) arises naturally in cases like protocols, where different parties activate the same cryptographic function, or in the case of a global service providers (like cloud operators) which need to replicate the cryptographic function to allow for accessible and responsive services. We specifically deal with the theoretical setting of “leakage resilient cryptography,” (modeling leakage as a bound associated with algorithmic steps), and in the most general model of continual leakage on memory, randomness (and thus computation) with periods of operation and refresh of private keys between them. We first investigate public-key cryptography, and construct a multilocation leakage resilient signature scheme (with unbounded number of locations) with optimal (i.e., total n(1− o(1)) leakage) in a period, and O(logn) leakage during updates (n is the key size). The new crucial issue behind our scheme is how to maintain leakage at each location at the level of key leakage in the single location variant, even under parallel adaptive leakage at the different locations. We then construct a shared-symmetric-key authenticated session protocol that is resilient to leakage on both the sender and the receiver, and tolerates O(logn) bits of leakage per computation. We construct and utilize a single-location pseudorandom generator which is the first to tolerate continual leakage with only an efficient pseudorandom function as a primitive component. This protocol highlights the importance of protocol level “per message synchronization” against leakage adversaries. Interestingly, the construction is secure in spite of the entire randomness used in the refresh processes being publicly available.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A new security proof for FMNV continuous non-malleable encoding scheme

A non-malleable code is a variant of an encoding scheme which is resilient to tampering attacks. The main idea behind non-malleable coding is that the adversary should not be able to obtain any valuable information about the message. Non-malleable codes are used in tamper-resilient cryptography and protecting memories against tampering attacks. Many different types of non-malleability have alre...

متن کامل

New Approach to Practical Leakage-Resilient Public-Key Cryptography

We present a new approach to construct several leakage-resilient cryptographic primitives, including leakage-resilient public-key encryption (PKE) schemes, authenticated key exchange (AKE) protocols and low-latency key exchange (LLKE) protocols. To this end, we introduce a new primitive called leakage-resilient non-interactive key exchange (LR-NIKE) protocol. We introduce a generic security mod...

متن کامل

Efficient Compilers for After-the-Fact Leakage: From CPA to CCA-2 Secure PKE to AKE

The goal of leakage-resilient cryptography is to construct cryptographic algorithms that are secure even if the adversary obtains side-channel information from the real world implementation of these algorithms. Most of the prior works on leakage-resilient cryptography consider leakage models where the adversary has access to the leakage oracle before the challenge-ciphertext is generated (befor...

متن کامل

Practical Leakage-Resilient Symmetric Cryptography

Leakage resilient cryptography attempts to incorporate sidechannel leakage into the black-box security model and designs cryptographic schemes that are provably secure within it. Informally, a scheme is leakage-resilient if it remains secure even if an adversary learns a bounded amount of arbitrary information about the schemes internal state. Unfortunately, most leakage resilient schemes are u...

متن کامل

Insecurity of RCB: Leakage-Resilient Authenticated Encryption

Leakage-resilient cryptography is about security in the presence of leakage from side-channels. In this paper, we present several issues of the RCB block cipher mode. Agrawal et al [2] proposed recently RCB as a leakage-resilient authenticated encryption (AE) scheme. Our main result is that RCB fails to provide authenticity, even in the absence of leakage.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012